MIT研究人员开发出验证机器人安全性和稳定性的新算法有助于更安全地部署机

发布时间:2024-07-19 11:12   内容来源:盖世汽车   阅读量:6340   

盖世汽车讯 神经网络对工程师如何设计机器人控制器产生了巨大影响,催生了自适应能力更强、效率更高的机器。不过,这些类似大脑的机器学习系统也是一把双刃剑:其复杂性使其功能强大,但也难以保证由神经网络驱动的机器人能够安全地完成任务。

验证机器人安全性和稳定性的传统方法是通过称为李雅普诺夫函数的技术。如果能找到一个李雅普诺夫函数的值持续下降,那么与更高值相关的不安全或不稳定情况永远不会发生。然而,对于由神经网络控制的机器人,此前用于验证李雅普诺夫条件的方法并不能很好地扩展到复杂的机器。

据外媒报道,麻省理工学院计算机科学与人工智能实验室(CSAIL)及其它机构的研究人员现在开发出新技术,可以在更复杂的系统中严格验证李雅普诺夫计算。该算法可以高效地搜索和验证李雅普诺夫函数,为系统的稳定性提供保证。这种方法可能有助于更安全地部署机器人和自动驾驶汽车,包括飞机和航天器。

声明:本网转发此文,旨在为读者提供更多资讯信息,所渉内容不构成投资、建议消费。文章内容如有疑问,请与有关方核实,文章观点非本网站观点,仅供读者参考。

热门图文